Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 283
Filtrar
1.
Nano Lett ; 2024 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-38726841

RESUMO

In the emerging two-dimensional organic-inorganic hybrid perovskites, the electronic structures and carrier behaviors are strongly impacted by intrinsic electron-phonon interactions, which have received inadequate attention. In this study, we report an intriguing phenomenon of negative carrier diffusion induced by electron-phonon coupling in (2T)2PbI4. Theoretical calculations reveal that the electron-phonon coupling drives the band alignment in (2T)2PbI4 to alternate between type I and type II heterostructures. As a consequence, photoexcited holes undergo transitions between the organic ligands and inorganic layers, resulting in abnormal carrier transport behavior compared to other two-dimensional hybrid perovskites. These findings provide valuable insights into the role of electron-phonon coupling in shaping the band alignments and carrier behaviors in two-dimensional hybrid perovskites. They also open up exciting avenues for designing and fabricating functional semiconductor heterostructures with tailored properties.

2.
Natl Sci Rev ; 11(5): nwad280, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38577663

RESUMO

Fast optical modulation of nanoplasmonics is fundamental for on-chip integration of all-optical devices. Although various strategies have been proposed for dynamic modulation of surface plasmons, critical issues of device compatibility and extremely low efficiency in the visible spectrum hamper the application of optoplasmonic nanochips. Here we establish an optoplasmonic system based on Au@Cu2-xS hybrid core-shell nanoparticles. The optical excitation of hot electrons and their charge transfer to the semiconductor coating (Cu2-xS) lead to lowered electron density of Au, which results in the red shift of the localized surface plasmon resonance. The hot electrons can also transport through the Cu2-xS layer to the metal substrate, which increases the conductance of the nanogap. As such, the coupled gap plasmon blue-shifts with a magnitude of up to ∼15 nm, depending on the excitation power and the thickness of the coatings, which agrees with numerical simulations. All of this optoelectronic tuning process is highly reversible, controllable and fast with a modulated laser beam, which is highly compatible and sufficiently useful for on-chip integration of nanophotonic devices.

3.
Plants (Basel) ; 13(4)2024 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-38498446

RESUMO

Odorant-binding proteins (OBPs) play important roles in the insect olfactory system since they bind external odor molecules to trigger insect olfactory responses. Previous studies have identified some plant-derived volatiles that attract the pervasive insect pest Cnaphalocrocis medinalis (Lepidoptera: Pyralidae), such as phenylacetaldehyde, benzyl acetate, 1-heptanol, and hexanal. To characterize the roles of CmedOBPs in the recognition of these four volatiles, we analyzed the binding abilities of selected CmedOBPs to each of the four compounds, as well as the expression patterns of CmedOBPs in different developmental stages of C. medinalis adult. Antennaes of C. medinalis adults were sensitive to the studied plant volatile combinations. Expression levels of multiple CmedOBPs were significantly increased in the antennae of 2-day-old adults after exposure to volatiles. CmedOBP1, CmedOBP6, CmedPBP1, CmedPBP2, and CmedGOBP2 were significantly up-regulated in the antennae of volatile-stimulated female and male adults when compared to untreated controls. Fluorescence competition assays confirmed that CmedOBP1 could strongly bind 1-heptanol, hexanal, and phenylacetaldehyde; CmedOBP15 strongly bound benzyl acetate and phenylacetaldehyde; and CmedOBP26 could weakly bind 1-heptanol. This study lays a theoretical foundation for further analysis of the mechanisms by which plant volatiles can attract C. medinalis. It also provides a technical basis for the future development of efficient plant volatile attractants of C. medinalis.

4.
Front Genet ; 15: 1342239, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38327832

RESUMO

Powdery mildew is one of the most severe diseases affecting wheat yield and quality and is caused by Blumeria graminis f. sp. tritici (Bgt). Host resistance is the preferred strategy to prevent this disease. However, the narrow genetic basis of common wheat has increased the demand for diversified germplasm resources against powdery mildew. Wheat relatives, especially the secondary gene pool of common wheat, are important gene donors in the genetic improvement of common wheat because of its abundant genetic variation and close kinship with wheat. In this study, a series of 137 wheat relatives, including 53 Triticum monococcum L. (2n = 2x = 14, AA), 6 T. urartu Thumanjan ex Gandilyan (2n = 2x = 14, AA), 9 T. timopheevii Zhuk. (2n = 4x = 28, AAGG), 66 T. aestivum subsp. spelta (2n = 6x = 42, AABBDD), and 3 Aegilops speltoides (2n = 2x = 14, SS) were systematically evaluated for their powdery mildew resistance and composition of Pm genes. Out of 137 (60.58%) accessions, 83 were resistant to Bgt isolate E09 at the seedling stage, and 116 of 137 (84.67%) wheat relatives were resistant to the mixture of Bgt isolates at the adult stage. This indicates that these accessions show a high level of resistance to powdery mildew. Some 31 markers for 23 known Pm genes were used to test these 137 accessions, and, in the results, only Pm2, Pm4, Pm6, Pm58, and Pm68 were detected. Among them, three Pm4 alleles (Pm4a, Pm4b, and Pm4f) were identified in 4 T. subsp. spelta accessions. q-RT PCR further confirmed that Pm4 alleles played a role in disease resistance in these four accessions. The phylogenetic tree showed that the kinship of Pm4 was close to Pm24 and Sr62. This study not only provides reference information and valuable germplasm resources for breeding new wheat varieties with disease resistance but also lays a foundation for enriching the genetic basis of wheat resistance to powdery mildew.

5.
Plant Dis ; 2024 Jan 03.
Artigo em Inglês | MEDLINE | ID: mdl-38173259

RESUMO

Powdery mildew, caused by Blumeria graminis f. sp. tritici (Bgt), is a serious threat to wheat (Triticum aestivum L.) production. Narrow genetic basis of common wheat boosted the demand for diversified donors against powdery mildew. Aegilops tauschii Coss (2n = 2x = DD) and emmer wheat (2n = 4x = AABB), as the ancestor species of common wheat, are important gene donors for genetic improvement of common wheat. In this study, a total of 71 Ae. tauschii Coss and 161 emmer wheat accessions were firstly evaluated their powdery mildew resistance using the Bgt isolate E09. Thirty-three Ae. tauschii Coss (46.5%) and 108 emmer wheat accessions (67.1%) were resistant. Then, all these accessions were tested by the diagnostic markers for 21 known Pm genes. The results showed that Pm2 alleles were detected in all the 71 Ae. tauschii Coss and only Pm4 alleles were detected in the 20 of 161 emmer wheat accessions. After haplotype analysis, we identified four Pm4 alleles (Pm4a, Pm4b, Pm4d and Pm4f) in the emmer wheat accessions and three Pm2 alleles (Pm2d, Pm2e and Pm2g) in the Ae. tauschii Coss. Further resistant spectrum analysis indicated that these resistance accessions displayed different resistance reactions to different Bgt isolates, implying they may have other Pm genes apart from Pm2 and/or Pm4 alleles. Notably, a new Pm2 allele Pm2S was identified in the Ae. tauschii Coss, which contained a 64 bp deletion in the first exon and formed a new termination site at the 513th triplet of the shifted reading frame compared to reported Pm2 alleles. The phylogenetic tree of Pm2S showed that the kinship of Pm2S was closed to Pm2h. To efficiently and accurately detect Pm2S and distinguish with other Pm2 alleles in Ae. tauschii Coss background, a diagnostic marker YTU-QS-3 was developed and verified its effectiveness. This study provided valuable Pm alleles and enriched the genetic diversity of the powdery mildew resistance in wheat improvement.

6.
Rice (N Y) ; 17(1): 9, 2024 Jan 20.
Artigo em Inglês | MEDLINE | ID: mdl-38244131

RESUMO

Rice leaf folder, Cnaphalocrocis medinalis (Guenée), is one of the most serious pests on rice. At present, chemical control is the main method for controlling this pest. However, the indiscriminate use of chemical insecticides has non-target effects and may cause environmental pollution. Besides, leaf curling behavior by C. medinalis may indirectly reduce the efficacy of chemical spray. Therefore, it is crucial to cultivate efficient rice varieties resistant to this pest. Previous studies have found that three different rice varieties, Zhongzao39 (ZZ39), Xiushui134 (XS134), and Yongyou1540 (YY1540), had varying degrees of infestation by C. medinalis. However, it is currently unclear whether the reason for this difference is related to the difference in defense ability of the three rice varieties against the infestation of C. medinalis. To explore this issue, the current study investigated the effects of three rice varieties on the growth performance and food utilization capability of the 4th instar C. medinalis. Further, it elucidated the differences in defense responses among different rice varieties based on the differences in leaf physiological and biochemical indicators and their impact on population occurrence. The results showed that the larval survival rate was the lowest, and the development period was significantly prolonged after feeding on YY1540. This was not related to the differences in leaf wax, pigments, and nutritional components among the three rice varieties nor to the feeding preferences of the larvae. The rate of superoxide anion production, hydrogen peroxide content, and the activity of three protective enzymes were negatively correlated with larval survival rate, and they all showed the highest in YY1540 leaves. Compared to other tested varieties, although the larvae feeding on YY1540 had higher conversion efficiency of ingested food and lower relative consumption rate, their relative growth was faster, indicating stronger food utilization capability. However, they had a lower accumulation of protein. This suggests that different rice varieties had different levels of oxidative stress after infestation by C. medinalis. The defense response of YY1540 was more intense, which was not conducive to the development of the larvae population. These results will provide new insights into the interaction mechanism between different rice varieties and C. medinalis and provide a theoretical basis for cultivating rice varieties resistant to this pest.

7.
Plants (Basel) ; 13(2)2024 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-38256738

RESUMO

Plants and insects are engaged in a tight relationship, with phytophagous insects often utilizing volatile organic substances released by host plants to find food and egg-laying sites. Using plant volatiles as attractants for integrated pest management is vital due to its high efficacy and low environmental toxicity. Using naturally occurring plant volatiles combined with insect olfactory mechanisms to select volatile molecules for screening has proved an effective method for developing plant volatile-based attractant technologies. However, the widespread adoption of this technique is still limited by the lack of a complete understanding of molecular insect olfactory pathways. This paper first describes the nature of plant volatiles and the mechanisms of plant volatile perception by insects. Then, the attraction mechanism of plant volatiles to insects is introduced with the example of Cnaphalocrocis medinalis. Next, the progress of the development and utilization of plant volatiles to manage pests is presented. Finally, the functions played by the olfactory system of insects in recognizing plant volatiles and the application prospects of utilizing volatiles for green pest control are discussed. Understanding the sensing mechanism of insects to plant volatiles and its utilization will be critical for pest management in agriculture.

8.
ACS Nano ; 18(4): 2541-2551, 2024 Jan 30.
Artigo em Inglês | MEDLINE | ID: mdl-38227821

RESUMO

Quantum tunneling, in which electrons can tunnel through a finite potential barrier while simultaneously interacting with other matter excitation, is one of the most fascinating phenomena without classical correspondence. In an extremely thin metallic nanogap, the deep-subwavelength-confined plasmon modes can be directly excited by the inelastically tunneling electrons driven by an externally applied voltage. Light emission via inelastic tunneling possesses a great potential application for next-generation light sources, with great superiority of ultracompact integration, large bandwidth, and ultrafast response. In this Perspective, we first briefly introduce the mechanism of plasmon generation in the inelastic electron tunneling process. Then the state of the art in plasmonic tunneling junctions will be reviewed, particularly emphasizing efficiency improvement, precise construction, active control, and electrically driven optical antenna integration. Ultimately, we forecast some promising and critical prospects that require further investigation.

9.
Light Sci Appl ; 13(1): 34, 2024 Jan 30.
Artigo em Inglês | MEDLINE | ID: mdl-38291038

RESUMO

The superfluorescence effect has received extensive attention due to the many-body physics of quantum correlation in dipole gas and the optical applications of ultrafast bright radiation field based on the cooperative quantum state. Here, we demonstrate not only to observe the superfluorescence effect but also to control the cooperative state of the excitons ensemble by externally applying a regulatory dimension of coupling light fields. A new quasi-particle called cooperative exciton-polariton is revealed in a light-matter hybrid structure of a perovskite quantum dot thin film spin-coated on a Distributed Bragg Reflector. Above the nonlinear threshold, polaritonic condensation occurs at a nonzero momentum state on the lower polariton branch owning to the vital role of the synchronized excitons. The phase transition from superfluorescence to polariton condensation exhibits typical signatures of a decrease of the linewidth, an increase of the macroscopic coherence as well as an accelerated radiation decay rate. These findings are promising for opening new potential applications for super-brightness and unconventional coherent light sources and could enable the exploitation of cooperative effects for quantum optics.

10.
Plants (Basel) ; 12(23)2023 Dec 03.
Artigo em Inglês | MEDLINE | ID: mdl-38068696

RESUMO

Penoxsulam is an acetolactate synthase (ALS)-inhibiting herbicide usually applied by post-emergence foliar spraying (PFS) for the control of Echinochloa crus-galli and numerous annual weeds in paddy fields. Herbicides applied by foliar spraying can have negative impacts on the environment, ecosystems, and human health. In this study, the response of E. crus-galli and rice to the PFS and post-emergence water-dispersal (PWD) applications of penoxsulam, and the differences in the detoxification displayed by them between the two treatment methods were compared. The results showed that the PWD application of penoxsulam provides a similar control efficacy against E. crus-galli as PFS at the 1-, 3-, and 5-leaf stages. Meanwhile, the PWD application had a higher safety for the rice. After being treated with 30 g a.i. ha-1 penoxsulam, residues were not detected in the rice treated by the PWD application method, whereas, with the PFS treatment, there was 59.0 µg/kg penoxsulam remaining. With the PFS application, there were many more residues of penoxsulam in the E. crus-galli than with the PWD method; the amount of residues was 32-fold higher 12 h after treatment. The in vitro enzyme activity assays revealed that the activities of ALS, glutathione-S-transferase (GST), and cytochrome P450 monooxygenases (P450) were increased in the PWD treatments, and were 1.5-, 1.3-, and 2.3-fold higher than with PFS 72 h after treatment. The real-time quantitative PCR (qRT-PCR) revealed that the GST1 and P450 genes, CYP81A14, CYP81A12, CYP81A18, and CYP81A21 were upregulated with the PWD application versus PFS in the E. crus-galli. In summary, these results demonstrate that the herbicidal activity was not affected by the upregulation of target and metabolic enzyme activities with the PWD application of penoxsulam. This research could contribute to application strategies reducing the risk of rice injury and environmental impacts by using water-dispersal formulations of penoxsulam.

11.
Light Sci Appl ; 12(1): 295, 2023 Dec 07.
Artigo em Inglês | MEDLINE | ID: mdl-38057305

RESUMO

Various exciton species in transition metal dichalcogenides (TMDs), such as neutral excitons, trions (charged excitons), dark excitons, and biexcitons, have been individually discovered with distinct light-matter interactions. In terms of valley-spin locked band structures and electron-hole configurations, these exciton species demonstrate flexible control of emission light with degrees of freedom (DOFs) such as intensity, polarization, frequency, and dynamics. However, it remains elusive to fully manipulate different exciton species on demand for practical photonic applications. Here, we investigate the contrasting light-matter interactions to control multiple DOFs of emission light in a hybrid monolayer WSe2-Ag nanowire (NW) structure by taking advantage of various exciton species. These excitons, including trions, dark excitons, and biexcitons, are found to couple independently with propagating surface plasmon polaritons (SPPs) of Ag NW in quite different ways, thanks to the orientations of transition dipoles. Consistent with the simulations, the dark excitons and dark trions show extremely high coupling efficiency with SPPs, while the trions demonstrate directional chiral-coupling features. This study presents a crucial step towards the ultimate goal of exploiting the comprehensive spectrum of TMD excitons for optical information processing and quantum optics.

12.
Nano Lett ; 23(23): 11376-11384, 2023 Dec 13.
Artigo em Inglês | MEDLINE | ID: mdl-38038244

RESUMO

Constructing chiral plexcitonic systems with tunable plasmon-exciton coupling may advance the scientific exploitation of strong light-matter interactions. Because of their intriguing chiroptical properties, chiral plasmonic materials have shown promising applications in photonics, sensing, and biomedicine. However, the strong coupling of chiral plasmonic nanoparticles with excitons remains largely unexplored. Here we demonstrate the construction of a chiral plasmon-exciton system using chiral AuAg nanorods and J aggregates for tuning the plexcitonic optical chirality. Circular dichroism spectroscopy was employed to characterize chiral plasmon-exciton coupling, in which Rabi splitting and anticrossing behaviors were observed, whereas the extinction spectra exhibited less prominent phenomena. By controlling the number of molecular excitons and the energy detuning between plasmons and excitons, we have been able to fine-tune the plexcitonic optical chirality. The ability to fine-tune the plexcitonic optical chirality opens up unique opportunities for exploring chiral light-matter interactions and boosting the development of emerging chiroptical devices.

13.
Pestic Biochem Physiol ; 196: 105593, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37945243

RESUMO

The fall armyworm, Spodoptera frugiperda, is a notorious polyphagous pest that causes serious economic losses in crucial crops and has invaded Africa and Asia. Lufenuron is widely used for controlling S. frugiperda in China, owing to its high toxicity against this key pest, and less pollution and little impact on natural enemies. In the present study, the sublethal and transgenerational effects of lufenuron on S. frugiperda were investigated to provide in-depth information for the rational use of lufenuron. Results showed that the development time and pupae weight were not significantly affected following exposure of females to LC10 and LC25 and male S. frugiperda to the LC10 of lufenuron. However, LC25 exposure significantly reduced pupal and total development time and pupae weight of male S. frugiperda. The longevity of S. frugiperda adults was prolonged by lufenuron and the fecundity of S. frugiperda treated with LC10 of lufenuron was significantly increased by 40% compared to the control. In addition, our study demonstrated that the LC25 of lufenuron had transgenerational effects on the progeny generation. The development time of female S. frugiperda whose parents were exposed to LC25 of lufenuron was significantly decreased compared to the control. And then, the expression profiles of Vg, VgR, JHEH, JHE, JHAMT, JHBP, CYP307A1, CYP306A1, CYP302A1 and CYP314A1 genes involved in insect reproduction and development were analyzed using Quantitative Real-Time PCR (RT-qPCR). Results showed that Vg, VgR, JHE, JHAMT, and CYP306A1 were significantly upregulated at the LC10 of lufenuron, which revealed that these upregulated genes might be linked with increased fecundity of S. frugiperda. Taken together, these findings highlighted the importance of sublethal and transgenerational effects under laboratory conditions and these effects may change the population dynamics in the field. Therefore, our study provided valuable information for promoting the rational use of lufenuron for controlling S. frugiperda.


Assuntos
Benzamidas , Reprodução , Feminino , Animais , Spodoptera/genética , Fertilidade , Pupa , Larva
14.
Nano Lett ; 23(20): 9538-9546, 2023 Oct 25.
Artigo em Inglês | MEDLINE | ID: mdl-37818838

RESUMO

Exciton-polaritons are composite quasiparticles that result from the coupling of excitonic transitions and optical modes. They have been extensively studied because of their quantum phenomena and potential applications in unconventional coherent light sources and all-optical control elements. In this work, we report the observation of Bose-Einstein condensation of the upper polariton branch in a transferable WS2 monolayer microcavity. Near the condensation threshold, we observe a nonlinear increase in upper polariton intensity accompanied by a decrease in line width and an increase in temporal coherence, all of which are hallmarks of Bose-Einstein condensation. Simulations show that this condensation occurs within a specific particle density range, depending on the excitonic properties and pumping conditions. The manifestation of upper polariton condensation unlocks new possibilities for studying the condensate competition while linking it to practical realizations in polaritonic lasers. Our findings contribute to the understanding of bosonic systems and offer potential for the development of polaritonic devices.

15.
Light Sci Appl ; 12(1): 220, 2023 Sep 08.
Artigo em Inglês | MEDLINE | ID: mdl-37679312

RESUMO

Exciton polaritons in atomically thin transition-metal dichalcogenide microcavities provide a versatile platform for advancing optoelectronic devices and studying the interacting Bosonic physics at ambient conditions. Rationally engineering the favorable properties of polaritons is critically required for the rapidly growing research. Here, we demonstrate the manipulation of nonlinear polaritons with the lithographically defined potential landscapes in monolayer WS2 microcavities. The discretization of photoluminescence dispersions and spatially confined patterns indicate the deterministic on-site localization of polaritons by the artificial mesa cavities. Varying the trapping sizes, the polariton-reservoir interaction strength is enhanced by about six times through managing the polariton-exciton spatial overlap. Meanwhile, the coherence of trapped polaritons is significantly improved due to the spectral narrowing and tailored in a picosecond range. Therefore, our work not only offers a convenient approach to manipulating the nonlinearity and coherence of polaritons but also opens up possibilities for exploring many-body phenomena and developing novel polaritonic devices based on 2D materials.

16.
Sci Total Environ ; 896: 166332, 2023 Oct 20.
Artigo em Inglês | MEDLINE | ID: mdl-37597563

RESUMO

Microplastics (MPs) has been suggested that it can greatly affect soil greenhouse gases (GHGs) emissions via altering soil physical, chemical, and biological properties. However, the difference in GHGs emissions, especially for those from coastal wetland soils, between varied aged MPs was rarely explored and the underlying mechanisms of GHGs emissions affected by the aged MPs were poorly understood. Therefore, the implications of fibrous polypropylene MPs (FPP-MPs) exposure on N2O, CO2, and CH4 emissions were examined by a 60-day soil incubation experiment. Compared with the control, the additions of un-aged FPP-MPs with both two rates (0.2 and 2 %) and aged FPP-MPs with a low rate (0.2 %) showed an insignificant effect on N2O emission, while the aged FPP-MPs added with a high rate (2 %) resulted in a remarkably increase in N2O emission, especially for those of the 30-day-aged FPP-MPs. A significant increase in CO2 emission was only observed in the 30-day-aged FPP-MPs treatments, compared with the control, and a higher addition rate produced a higher increase of CO2 emission. Regarding CH4 emission, it was significantly increased by adding aged FPP-MPs, and a longer aging period or/and a higher addition rate generated a higher degree of promotion of CH4 emission. However, compared with the CO2 emission, the quantity of CH4 emission was extremely low. These increased GHGs emissions can be ascribed to the improvements in soil physical structure and other chemical properties (e.g., pH and contents of soil organic matter and dissolved organic carbon) and enhancements in the abundances of denitrification- and carbon mineralization-related microorganisms. Overall, our results highlight the risk of elevated GHGs emissions from the soil polluted with 30-day-aged FPP-MPs, which should not be ignored as long-term aged FPP-MPs continue to increase in coastal wetland soils.

17.
ACS Nano ; 17(17): 17342-17349, 2023 Sep 12.
Artigo em Inglês | MEDLINE | ID: mdl-37638743

RESUMO

Plasmonic nanowires (NWs) due to their polarization-dependent optics and enhanced light-matter interactions have presented vibrant capabilities in functional nanophotonic devices. However, current demonstrations have largely been based on chemically synthesized Ag NWs, which are extremely unstable and poorly functional. Here we show single-crystalline Al NWs can be fabricated by a superplastic nanomolding (SPNM) technique on a centimeter scale, which are earth-abundant and highly stable. They present robust properties of multimode waveguiding with long-term stability, high efficiency of beam splitting in response to the polarization, and durable thermal optical modulation, which can be readily applied as nanophotonic routers, splitters, and information encryptors. Moreover, this SNPM technique is extendable to other metals, which are highly exploitable for functional nanophotonic devices and integrated optical chips.

18.
Curr Biol ; 33(17): 3702-3710.e5, 2023 09 11.
Artigo em Inglês | MEDLINE | ID: mdl-37607548

RESUMO

In intimate ecological interactions, the interdependency of species may result in correlated demographic histories. For species of conservation concern, understanding the long-term dynamics of such interactions may shed light on the drivers of population decline. Here, we address the demographic history of the monarch butterfly, Danaus plexippus, and its dominant host plant, the common milkweed Asclepias syriaca (A. syriaca), using broad-scale sampling and genomic inference. Because genetic resources for milkweed have lagged behind those for monarchs, we first release a chromosome-level genome assembly and annotation for common milkweed. Next, we show that despite its enormous geographic range across eastern North America, A. syriaca is best characterized as a single, roughly panmictic population. Using approximate Bayesian computation with random forests (ABC-RF), a machine learning method for reconstructing demographic histories, we show that both monarchs and milkweed experienced population expansion during the most recent recession of North American glaciers 10,000-20,000 years ago. Our data also identify concurrent population expansions in both species during the large-scale clearing of eastern forests (∼200 years ago). Finally, we find no evidence that either species experienced a reduction in effective population size over the past 75 years. Thus, the well-documented decline of monarch abundance over the past 40 years is not visible in our genomic dataset, reflecting a possible mismatch of the overwintering census population to effective population size in this species.


Assuntos
Asclepias , Borboletas , Animais , Asclepias/genética , Borboletas/genética , Teorema de Bayes , Densidade Demográfica , Genômica
19.
Nano Lett ; 23(15): 6966-6972, 2023 Aug 09.
Artigo em Inglês | MEDLINE | ID: mdl-37498293

RESUMO

Coherent multiwave mixing is in demand for optical frequency conversion, imaging, quantum information science, etc., but has rarely been demonstrated in solid-state systems. Here, we observed three- and five-wave mixing (5WM) in a c-axis growth zinc oxide microwire on a Au film with picosecond pulses in the near-infrared region. An output 5WM of 4.7 × 10-7 µW, only 2-3 orders smaller than the three-wave mixing, is achieved when the excitation power is as low as 1.5 mW and the peak power density as weak as ∼107 W/cm2. The excitation power dependence of 5WM agrees well with the perturbation limit under the low intensity but exhibits a strong deviation at a high pumping power. This extraordinary behavior is attributed to the cooperative resonant enhancement effect when pumping in the near-infrared range. Our study offers a potential solid-state platform for on-chip multiwave mixing and quantum nonlinear optics, such as generating many-photon entangled states or the construction of photon-photon quantum logic gates.

20.
Arch Insect Biochem Physiol ; 114(1): e22030, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37282754

RESUMO

The antioxidant proteins, peroxiredoxins (Prxs), function to protect insects from reactive oxygen species-induced toxicity. In this study, two Prx genes, CsPrx5, and CsPrx6, were cloned and characterized from the paddy field pest, Chilo suppressalis, containing open reading frames of 570 and 672 bp encoding 189 and 223 amino acid polypeptides, respectively. Then, we investigated the influence of various stresses on their expression levels using quantitative real-time PCR (qRT-PCR). The results showed expression of CsPrx5 and CsPrx6 in all developmental stages, with eggs having the highest level. CsPrx5 and CsPrx6 showed higher expression in the epidermis and fat body, and CsPrx6 also showed higher expression in midgut, fat body, and epidermis. Increasing concentrations of insecticides (chlorantraniliprole and spinetoram) and hydrogen peroxide (H2 O2 ) increased the expression levels of CsPrx5 and CsPrx6. In addition, the expression levels of CsPrx5 and CsPrx6 were almost markedly upregulated in larvae under temperature stress or fed by vetiver. Thus, CsPrx5 and CsPrx6 upregulation might increase the C. suppressalis defense response by reducing the impact of environmental stress, providing a better understanding of the relationship between environmental stresses and insect defense systems.


Assuntos
Mariposas , Animais , Mariposas/genética , Mariposas/metabolismo , Estresse Fisiológico/genética , Larva/genética , Antioxidantes/metabolismo , Espécies Reativas de Oxigênio/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA